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Abstract—In this paper, we present a memory access op-
timized routing scheme for a hardware accelerated real-time
implementation of deep convolutional neural networks (DCNNs)
on a mobile platform. DCNNs consist of multiple layers of
3D convolutions, each comprising between tens and hundreds
of filters and they generate the most expensive operations in
DCNNs. Systems that run DCNNs need to pass 3D input maps
to the hardware accelerators for convolutions and they face
the limitation of streaming data in and out of the hardware
accelerator. The bandwidth limited systems require data reuse
to utilize computational resources efficiently. We propose a new
routing scheme for 3D convolutions by taking advantage of the
characteristic of DCNNs to fully utilize all the resources in the
hardware accelerator. This routing scheme is implemented on
the Xilinx Zynq-7000 All Programmable SoC. The system fully
explores weight level and node level parallelization of DCNNs and
achieves a peak performance 2x better than the previous routing
scheme while running DCNNs.

I. INTRODUCTION

Artificial vision systems aim to provide visual understand-
ing by extracting high-level information from raw images. In
other words, these systems aim to process high dimensional
data like images and videos and extract useful low-dimensional
data, where decisions can be made based on. The exploration
of such systems has been an active field of research for the
past decades and many recent algorithms are showing promise
for use in visual understanding. These systems range from
fully trained Deep Convolutional Neural Networks (DCNNs)
to SIFT and SURF feature extractors [1], [2] and hierarchical
models of the visual cortex (HMAX) [3]. Recent work on
DCNNs show great promise to help solve visual classification
problems [4]–[7].

The power of DCNNs comes from having many layers
and filters to extract features from images in a hierarchical
manner. They consist of multiple layers of convolutions, each
comprising between tens and hundreds of filters. Other than
convolutions, each layer also includes a pooling and a non-
linearity operation, as shown in Figure 1. The first convo-
lution layer extracts simple features like edges and corners
and pooling provides scale and distortion invariance to the
network. The second convolution layer, because it is extracting
features from the output maps of the first layer, extracts more
complex shapes. As the network goes deeper, the higher layers
extract more complex shapes and with the pooling after each
convolution, they become less invariant to distortion in images.

DCNNs are getting bigger with more layers and param-
eters as new methods prevent them from over-fitting [8] and
Graphics Processing Units (GPUs) provide fast training of DC-
NNs. As DCNNs get bigger, the accuracy of object detection

increases [4], which makes them useful for applications in
autonomous robots, security systems, micro-UAVs and more
recently, mobile phones, automobiles and wearable support
systems [9]. These application require algorithms that can
recognize objects with a high degree of accuracy, however,
they should also be executed in real-time which require a
custom hardware. This is especially because convolutions are
computationally very expensive [10].

GPUs are becoming a common alternative to custom hard-
ware in vision applications because they are inexpensive and
easily programmable [11]. However, custom hardwares have
better performance with less power consumption which is a
must especially for mobile platforms. By developing a custom
architecture and configuration library that are fully adapted to
DCNNs, the product of power consumption by performance
can be improved by two orders of magnitude (100x). Because
of these advantages, extensive research has been done on
the custom architectures for convolutional networks or similar
algorithms [12]–[15].

This paper presents a memory access optimized routing
scheme for a hardware accelerated real-time implementation
of DCNNs on a mobile platform. Operations are scheduled by
taking advantage of the characteristic of DCNNs which enables
data reuse for the full utilization of the hardware resources.

The rest of the paper is organized as follows: Section II
explains related work. Section III describes the architecture
of the custom hardware. The capabilities and limitations of
the custom hardware are given in this section which are the
most important considerations when we optimize the memory
accesses. Section IV describes the resource allocation that
is optimized for DCNNs. This section describes the main
contribution of this work. Section V gives results on the
performance of the system. Section VI discusses the results
and talks about the future work. Section VII concludes.

II. RELATED WORK

Due to the intense and massive computation of deep
convolutional neural networks (DCNNs), several types of
parallelism has been applied to achieve real-time processing
such as weight parallelism which corresponds to a parallel sum
of products computation in convolution and node parallelism
which corresponds to computation over multiple convolutional
planes [16].

Extensive research has been done to exploit these paral-
lelisms of DCNNs on CPUs, GPUs and custom hardware.
A straight forward implementation of convolution operations
contains multiple nested for loops. For CPUs, unrolling the
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Fig. 1. Diagram of a DCNN. Each layer consists of three consecutive operations - convolution, max-pooling and non-linearity. Non-linearity is not demonstrated
in this figure as it does not change the dimension of the outputs. Based on the number of filters at each convolution layer, the number of planes changes and
based on the max-pooling stride the width and height of the planar maps decrease. The last layer is a spatial classifier which translates the set of inputs onto a
set of outputs which can be the labels of objects contained in input image.

convolution operations for cache friendly memory access is
suggested by the paper [17]. Other optimized software libraries
are implemented [18], [19]. Despite the benefit of such imple-
mentation, DCNNs on general purpose processors are still too
demanding to be used for real-time applications.

Different communication optimizations for GPUs are ex-
plored by the papers [20]–[22] to overcome the bandwidth
limitation between the host system and GPU memory. The
challenge of GPUs are to use the small local memory spaces
efficiently which only can store a part of an image. However,
the problem with the GPUs is the limited cache memory for
storing the filter coefficients of large networks [23].

Many research groups explored custom hardwares to accel-
erate convolutional neural networks [24]–[27]. Custom hard-
wares can exploit massive parallelism compared to CPUs
while consuming low power unlike GPUs because typically
a large number of logic units that can operate in parallel
is specialized to operations required for DCNNs. Especially
node parallelism gives a significant performance benefit for
convolutional neural networks [16], [24], [27] based on the
fact that each convolutional plane is independent from others
in the same layer. The degree of parallelism can be increased
by placing as many processing units as a silicon can hold.

However, while such powerful computing power achieved
by parallel processing units provides high throughput, its actual
performance is often limited by its memory bandwidth during
DCNNs computation. Since the number of connections to
produce a single output plane is much higher than the number
of processing units, node parallelism necessarily generates
intermediate results which needs to be stored in memory [28].
Such intermediates require frequent memory access between
host processor and memory. This causes significant overhead
time when used for large-scale neural networks.

For this reason, efficient routing scheme as well as massive
parallelism is a crucial factor for DCNNs accelerator in order
to reduce data transfer overhead. This issue was demonstrated
in a neuron spiking model [29] and a convolutional neural
networks model [27]. However, no experimental result was
supported to demonstrate performance of the former in a real-
world scenario. The latter focus on smaller convolution kernels
which do not have as much parallelism as larger kernels and
may not be much faster on custom hardware than on general
purpose processors.

The system described in this work uses a shared memory
architecture where the same memory can be accessed by both
ARM processor and programmable logic. The problem with

this system is the port limitation to steam data in and out
of the hardware accelerator. We propose a memory access
optimization routing to overcome this limitation which enables
the maximum node level parallelization of DCNNs. Whereas
the hardware fully explores the weight parallelism, our rout-
ing scheme enables the full node parallelism with available
resources in the hardware accelerator.

III. HARDWARE ACCELERATOR

In this section, we present the hardware accelerator for
DCNNs as the capabilities and limitations of this hardware
were the most important considerations when we optimized the
routing scheme to decrease the number of memory accesses
and increase the utilization of the hardware.

The hardware system is implemented on the Xilinx Zynq-
7000 All Programmable SoC which has a shared memory
architecture that has synchronous access to memory through
both ARM processor and programmable logic. The system
has four high performance ports to DDR3 memory. The high
performance ports tap into DDR3 memory using the AXI 4
bus. Each AXI DMA is bidirectional and can transfer two 32-
bit data words per clock cycle.

A. Computational Resources

The operations that are commonly used in DCNNs are
implemented in the custom hardware. We have the following
computational resources in the custom hardware:

1) Convolver: The core of DCNNs, as the name suggests,
is convolution operation. Convolution with trained filters are
used to extract useful features from the input images or from
the output maps of the previous layers, in which case con-
volution extracts complex features. This system’s convolution
engine can perform the following operation in one clock cycle.

yij =

n∑
m=1

n∑
l=1

xi+m,j+lwml (1)

where, yij is the output, xij is the value of an input pixel and
wml is the value of the n × n filter kernel. As an image is
streamed in, one input pixel results in one output pixel which
provides full exploration of weight-level parallelization, not
including an initial set up delay that occurs due to the pipelined
nature of the hardware.
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Fig. 2. Routing schemes for 3D convolutions. Solid circles represent the output maps of the corresponding layers. The ones on the left are the output maps
of Layer N, so they are the input maps of Layer N+1. Each map is two dimensional. The arrows represent 2D convolutions and the arrows going to the same
output are summed together. The libraries for the CPUs implement the convolution operation as in the Figure 2(a) where all the operations to produce one
output are scheduled first. After, the calculations to produce one output are completed, the operations for the next outputs are scheduled. CPUs have access to
the input maps, this scheme is an efficient way of implementation. However, a custom hardware has a limited access to the input maps. Therefore, the efficient
way of implementation, 2(b) and 2(c), is to do the calculations together if they use the same inputs. The dashed circles represent intermediate values, which are
the partial summation of the outputs of 2D convolutions. They need further processing for the final output.

2) Max-pooler: Max-pooling is a winner-take-all opera-
tion, the maximum activated value is transferred to the output
while the other values from that local area are ignored. This
operation gives roboustness to the networks because it discards
the exact position of the extracted features. The max-pooler
returns an image that is subsampled of the image in both
dimensions.

3) Non-linear operator: DCNNs generally have a non-
linear operation following the pooling operation. They are
used to remove the unimportant information and enhance the
important ones for the subsequent layers. Rectified Linear Unit
(ReLU), f(x) = max(0;x) currently is one of the most widely
used non-linear operator [4]. This non-linear operator in the
custom hardware also produces one output per clock cycle.

4) Stream Adder: This module takes two streams and adds
them together. This module is needed for 3D convolutions.
Multiple 2D convolutions are calculated by the convolution
engine and summed up to calculate 3D convolution. This
operator produces one output per clock cycle.

B. Architecture

The hardware is divided into two main areas: the operators
required for processing images and the memory router.

1) Collection: The operators are bundled together into a
single module called a collection. The presented system can
hold eight collections. Each collection can be run in parallel,
as can the operators contained within them. A collection has
a convolution, a max-pooling, a non-linear modules and a
stream adder. Inputs and outputs appear as data streams for
all modules. The output from the convolution operator can be
streamed into the max-pooling or non-linear module in the
same collection.

Another important optimization of this hardware acceler-
ator is the interior routing of the collections. Each collection

has a port to its neighbor collections which is a big advan-
tage for 3D convolutions because 3D convolutions require
summation of multiple 2D convolved results. The convolver
in each collection can perform 2D convolutions and produce
intermediate results. The intermediate results can be sent to the
neighbor collection’s stream adder and be combined with the
intermediate result produced in that collection. This process
can be repeated among all collections. Therefore, if we have
enough bandwidth to stream eight input maps, with eight
collections we can calculate eight, 2D convolutions and sum
all of them together at one DMA transaction which effectively
reduces the memory access.

2) Memory Router: The memory router interfaces with the
four AXI DMA engines and can be configured to route the
incoming data streams to one or more outputs. Therefore, same
incoming streams can be fed into different collections by the
memory router.

C. Limitations

This system can hold eight collections. However, there are
only four AXI ports to stream data in and out. Therefore,
the biggest handicap of this system is streaming data in and
out of the hardware accelerator. We cannot stream different
data to each collection. We need to use the same data in
multiple collections for the full utilization. When we designed
the routing scheme, this issue was the main concern.

IV. OPTIMAL ROUTING SCHEME

The novelty of this work is the routing scheme described
in this section. First, we want to introduce the most common
and heavy operation in DCNNs. Generally, DCNNs take RGB
images as inputs, these images have dimensions of 3×Width×
Height and in subsequent layers the first dimension increases
based on the number of filters at each layer. For example, if
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Fig. 3. Performance per second test over one layer network on different platforms. The network consists of 4× 32 convolution operations with 10× 10 filters,
2 × 2 max-pooling and non-linear operation. We also compare the hardware accelerator that is configured with the previous implementation described above
(before) and our implementation (after).

the first layer has eight filters, the input of the second layer’s
first dimension becomes eight. State of the art DCNNs contain
hundreds of filters at each layer.

Therefore, the filters for convolution are three dimensional
and so convolution operation includes a third dimensional
addition for each output as in equation 2.

yij =

n∑
k=1

n∑
m=1

n∑
l=1

xk,i+m,j+lwkml (2)

This operation is also demonstrated in Figure 2, each line
refers to a 2D convolution operation and the arrows going to
the same output are summed together.

In our system, as stated before, equation 1 can be per-
formed in one clock cycle and each collection can process a
2D input image by convolving it with 2D filters. In DCNNs,
we need to process images with 3D filters. Therefore, we need
to sum all input images convolved by 2D filters to obtain one
output map. To produce one output map, we need to convolve
N input images with N×W×H filters which can be calculated
as N separate 2D convolutions and their summation.

This hardware accelerator can perform 2D convolutions
at each collection and the results can be streamed into the
neighbor collection’s stream adder for summation. Usually,
there are not enough resources to calculate all 2D convolutions
needed to produce one output map. Hence, the output of each
DMA transaction is saved as an intermediate value. Here,
intermediate value refers to the partial summation over k in
equation 2. In the next transaction, the intermediate values are
streamed into the custom hardware for further accumulation
with the other outputs from 2D convolution operations.

In this custom hardware, we have four ports to transfer
inputs and outputs between the eight collections and memory.
Therefore, we do not have enough ports to bring a different
input to each collection. However, we can send four different
inputs to the first four collections and transfer the same four
inputs to the other four collections. As DCNNs process the
same inputs with different filters, we take advantage of this
input sharing which is illustrated in Figure 2(b) and Figure
2(c).

The straightforward approach, also used in the libraries for
the CPUs, is to process the operations to calculate one output

map, as shown in the Figure 2(a). In this scheme, the routing is
based on the outputs; outputs are calculated one after the other.
CPUs have easy access to the inputs, therefore, this scheme is
an efficient way of implementation. However, custom hardware
has limited access to the input maps. Because of that, our
scheme is based on the inputs. Once we stream an input, we
want to do operations together that are using that input so that
we can avoid streaming the same input multiple times.

With the approach from Figure 2(a) because we have
four ports to bring data, we can only utilize four collections.
However, we know that to calculate the other outputs, we will
process the same inputs with different filters. Therefore, to
utilize all eight collections, when we bring four inputs in, we
begin calculating intermediate values that will produce two
outputs later as depicted in Figure 2(b). In the next step, Figure
2(c), we keep performing the necessary convolutions and also
sum the output of the convolutions with the intermediate value
from the previous cycle.

Therefore, when we allocate resources, we use half of
the collections for the operations that will produce one of
the output maps and the rest for the next output map. The
operations for the two subsequent output maps are scheduled
together. When an input streams in from one port, it allocates
two collections because of the resource sharing described
above. In DCNNs, for each output map, we generally have tens
and hundreds of input maps. Therefore, by this scheme we can
produce two intermediate maps after each DMA transaction
and two outputs after the required number of transactions.
Because there are four ports to stream data out, streaming
output is not limited by the bandwidth.

Every time we calculate the final output of the 3D con-
volutions, we stream the output to the max-pooler and non-
linear operators in the same collection. Therefore, the final
output of the layer is streamed to memory. This routing scheme
decreases the memory access 2x and increases the hardware
utilization 2x compare to the original scheme.

V. EXPERIMENTAL RESULTS

The performance of the system that is configured with the
memory access optimized routing scheme was compared to the
system that is configured with the previous routing and also
a system running an Intel Core i5 2.6GHz CPU, a NVIDIA
GeForce GTX 690 GPU, and an ARM Cortex A9 processor.
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Fig. 4. Performance per second comparison of different applications of
DCNNs between the previous routing of DCNNs (before) and this work (after).

We used the Torch7 software [19] for demonstrating per-
formance on different platforms. The experiments use an input
image of 4× 256× 256. 1

The experiments are designed to demonstrate DCNN appli-
cations for video or image processing. In the applications, the
images need to be processed one by one which results in the
poor performance of GPU. GPUs can process multiple images
at the same time and Torch7 CUDA modules are optimized to
work in a batch mode. Therefore, as the batch size (number of
input images) are increased the performance increases linearly.
Our experiments show that with one input image, the GPU
performs 10.43 G-ops/s, if we increase the number of images
to 128, the performance increases to 500 G-ops/s.

The DCNN implementation of GPUs are mostly used to
train the networks where you have abundant number of input
images. GPUs have not been explored extensively to run real
time DCNN applications. An important reason for that is the
high-power consumption of GPUs. GPUs consume 384 watts,
whereas CPUs consume 45.7 watts and our platform consumes
a maximum of 8 watts.

We also compare the hardware accelerator that is config-
ured with the previous routing scheme which is the straight-
forward implementation that is mostly used libraries for CPUs
described above (before) and our implementation (after). In
this test, we choose the input image as 4 × 256 × 256 which
does not produce intermediate results and provide the full
utilization of our implementation. While our implementation is
able to utilize all the resources and reports 207.8 G-ops/s, the
previous implementation utilizes half of the resources because
of the limited bandwidth and gives us 100 G-ops/s. The hard-
ware accelerator with the memory access optimized routing
scheduling is 270 times faster than the baseline application
processor, a dual core ARM Cortex A9.

We also tested the performance in real-world applications
as reported in the Figure 4. We trained DCNNs according to
the method described in the paper [30] for face detection, scene

1Torch7 CUDA modules have a 256px limitation for width and height.

parsing and object tracking. DCNN for face detection and
scene parsing contain two layer networks and object tracking
contains three layer networks. The RGB input images with the
dimension of 3× 500× 500 are fed into the custom hardware.
Each network for each application requires different number
of G-ops per frame as shown in the Figure 4.

We compared the performance of the previous routing with
the memory access optimized routing proposed in this work.
Approximately, this work increased the performance by 2x in
all three real-world applications we implemented.

VI. DISCUSSION

In this section we analyze the reported performance of
the proposed system in the Section V. The system achieved
different number of G-ops/s at each application because of the
different amount of possible parallelizations. First application
face-detector uses small filter sizes which makes the system
explore small number of weight-level parallelizations.

Also as the network layers increase, there is a performance
drop because of the frequent memory accesses compared to the
one layer network from the Figure 3. The suggested memory
access optimized routing scheme decreases the memory ac-
cesses 2x compared to the previous implementation.

Because of the specifications of the current system, this
optimization scheme is implemented as calculation of two
outputs synchronously. However, this routing scheme can be
optimized for different platforms with different number of
ports and computational resources. If the system has more
computational resources than the system presented here, three
or more outputs can be calculated at the same time.

This work does not apply to the spatial classifier. Future
work will be the exploration of the parallelizations in the
classifier module.

VII. CONCLUSIONS

We describe a memory access optimized routing scheme
for a hardware accelerated real-time implementation of DC-
NNs on a mobile platform, and a complete system that can
run real-time DCNN applications.

The focus of this work was reusing the inputs for 3D convo-
lutions. DCNNs consist of multiple layers of 3D convolutions,
each comprising between tens and hundreds of filters. Systems
that run DCNNs need to pass 3D input maps to the hardware
accelerators for convolutions and they face the limitation of
streaming data in and out of the hardware accelerator. As the
biggest limitation is the bandwidth, and the same input maps
are processed with multiple different filters, the operations are
scheduled to calculate partial multiple outputs instead of one
output. This optimization enables to use all hardware resources
despite of the limited bandwidth.

The system fully explores weight-level and node-level
parallelization of DCNNs and achieves a peak performance
of 210 G-ops/s while running DCNN whereas the previous
routing achieves 100 G-ops/s.
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